search form

search form
Advanced Construction Materials Testing Center
Analytical Service Last update : 2017.08.29 Request for use
RI Category
Analytical Facilities
Keywords
Construction materials,microstructure,community-based facilities,Tensile and fatigue tests,compressive strength tests
Description
- Various construction that combines new materials and high-tech materials development
•Internationally-certified testing center for metal, cement, aggregate, construction and building materials
•Durability tests for extreme environmental circumstances
•Tensile and fatigue tests with composite and steel materials for social infrastructure
•Mixing concrete for roads, structures and asphalt, and specimen preparation, as well as compressive strength tests of high-strength concrete
Application Area
- Performance evaluation and analysis of the various materials used in infrastructure facilities
• Performance evaluation of steel-concrete composite, rock and pavement materials
• Non-destructive tests and microstructure analysis of cutting-edge construction materials
• Assessment of temperature and environmental effect
Service
Specifications
1. 5MN Large-sized Material Testing Machine
- Capacity : 5MN (Frequency : 3Hz),Column to Column : 3,000mm,Bending Compression test height : 5,000mm,Bending Span : 35,000mm,Actuator Stroke : 500mm
2. 5MN Compression Testing Machine
- Capacity :5MN,Pressureplates : 380×520mm,Actuator stroke : 100mm,Load mesuring range : 100~5,000kN,Piston stroke : 100mm,Deformation at max.load : 1.2mm
3. 500kN Rolling Fatigue Machine
- Capacity : 500kN,Stroke between grips : 950mm,Load Accuracy : 6kN to 600kN,Strain measurement accuracy : ±0.5% of indicated value,Test space : Width Between Columns-762mm,Maximum Vertical Test Space-2,057mm,Overall height : 3,677mm,Positon Transducer stroke : 250mm,Maximum operating Pressure : 21MPa
4. 250kN Rolling Fatigue Machine
- Capacity : 250kN,Chamber : -125℃~+315℃,Test area width : 640mm,Crosshead speed : 0.005~1,000mm/min,Electric Load cell Fmax : 100kN,Test space : Width Between Columns – 635mm,Maximum Vertical Test Space – 1,575mm,Overall height : 3,010mm,Positon Transducer stroke : 150mm,Maximum operating pressure : 21MPa
5. Porosimeter
- Vacuum/Low Pressure Ports : 4ea,High Pressure Ports : 2ea,Pressure upto : 60,000psi,Pore diameter : 0.003~360㎛,Scanning/Stepwise pressure increase mode
원전배관요소 시험

실험내용: 원전 배관요소의 파괴모드를 확인하기 위한 실험

주요 실험장비: Vision-based strain/displacement measurement system, Rosett strain gage, 500kN피로시험기, DATA LOGGER, Concrete gauge, Steel gauge, LVDT(50mm)

* 3in. 배관요소에 대해 3Mpa의 내압을 가압한 상태에서 반복하중재하시험을 수행하여 파괴모드를 확인하고자 함

* 배관 내부에 물을 채우고 에어펌프를 이용하여 가압함

* 가력 변위를 40mm, 50mm, 60mm, 70mm, 80mm로 변경하여 가력 함

* Strain gage를 이용하여 배관요소의 파괴예상 지점의 변형률 계측

* 시험체의 거동이 비탄성영역으로 진행될 경우 Strain gage가 파손되거나 신뢰성이 저하될 우려가 있으므로 Vision based system을 이용하여 파괴변형률 계측

PSC 보도교 재하시험

실험내용: 모듈식 노출콘크리트 프리캐스트 보도교의 구조적 안정성 평가를 위한 초기 휨강성, 균열모멘트 휨강도 측정

주요 실험장비: 5MN대형부재시험기, DATA LOGGER, Strain Gauge, LVDT(50mm), LVDT(100mm)

* 제작된 4개의 세그먼트를 연결 및 PS강연선으로 긴장 후 PSC 보도교가 거치되는 지점에 힌지를 위치시켜 실제와 같은 형태로 설치함

* 재하방법은 4점 재하방식으로 분당 2mm의 속도로 재하하며 아래의 표에 나타낸 산정 하중에 따라 하중을 가하며 균열을 측정함

 

구분

하중

(kN)

하중 산정 이유 (비고)

1

560

거더 하연 인장응력이 허용인장응력을 초과하여 최초로 균열발생이 예상되는 하중

2

1010

거더 상연 압축응력이 허용압축응력(국내기준)을 초과하는 하중

3

1250

강도설게법에 의한 시험체의 저항강도

4

1430

거더 상연 압축응력이 허용압축응력(유럽기준)을 초과하는 하중

5

2500

강도설게법에 의한 시험체의 저항강도의 2배

6

3750

강도설게법에 의한 시험체의 저항강도의 3배

7

파괴시

변위 및 전체 거동을 확인하여 파괴시까지 하중 재하

 

 

그림입니다.원본 그림의 이름: 07.jpg원본 그림의 크기: 가로 5312pixel, 세로 2988pixel사진 찍은 날짜: 2017년 04월 14일 오후 12:54카메라 제조 업체 : LG Electronics카메라 모델 : LG-F500SF-스톱 : 1.8노출 시간 : 1/144초IOS 감도 : 50색 대표 : sRGB노출 모드 : 자동측광 모드 : 가운데 중점 평균 측광플래시 모드 : 플래시 끔EXIF 버전

그림입니다.원본 그림의 이름: 11.JPG원본 그림의 크기: 가로 3264pixel, 세로 2448pixel사진 찍은 날짜: 2017년 04월 19일 오후 11:03카메라 제조 업체 : Apple카메라 모델 : iPad Air 2프로그램 이름 : 10.3.1F-스톱 : 2.4노출 시간 : 1/120초IOS 감도 : 25색 대표 : sRGB노출 모드 : 자동35mm 초점 거리 : 31프로그램 노출 : 자동 제어 모드

그림입니다.원본 그림의 이름: 11.JPG원본 그림의 크기: 가로 3264pixel, 세로 2448pixel사진 찍은 날짜: 2017년 04월 19일 오후 11:03카메라 제조 업체 : Apple카메라 모델 : iPad Air 2프로그램 이름 : 10.3.1F-스톱 : 2.4노출 시간 : 1/120초IOS 감도 : 25색 대표 : sRGB노출 모드 : 자동35mm 초점 거리 : 31프로그램 노출 : 자동 제어 모드

그림입니다.원본 그림의 이름: 20170419_20170419144141_20170419161000_144140.jpg원본 그림의 크기: 가로 1920pixel, 세로 1080pixel

그림입니다.원본 그림의 이름: CLP000041b0000a.bmp원본 그림의 크기: 가로 1625pixel, 세로 839pixel

철근 콘크리트 기둥의 일축압축 실험

실험내용: 나선철근으로 횡구속된 철근 콘크리트 기둥의 최소철근비 영향인자 실험

주요 실험장비: 5MN압축강도시험기, DATA LOGGER, Strain gauge, LVDT(50mm)

묶음 개체입니다.

실험체 상세 및 가력방법

 

-250mm×1,000mm 원주형 실험체를 UTM에 설치하여 일축 압축 실험을 수행

-실험구간에 LVDT를 설치하여 순수실험구간에서의 콘크리트 축방향 변형률 측정

-실험체 주철근과 횡보강근에 변형률게이지를 부착하여 철근의 변형률 측정

-실험체 파괴시까지 정적가력 수행

 

그림입니다.원본 그림의 이름: CLP00001e440005.bmp원본 그림의 크기: 가로 271pixel, 세로 181pixel

그림입니다.원본 그림의 이름: CLP00001e440006.bmp원본 그림의 크기: 가로 335pixel, 세로 189pixel

그림입니다.원본 그림의 이름: CLP00001e440007.bmp원본 그림의 크기: 가로 182pixel, 세로 205pixel

그림입니다.원본 그림의 이름: CLP00001e440008.bmp원본 그림의 크기: 가로 338pixel, 세로 225pixel

승용차 압축시험(Small overlap 구현시험)

실험내용: 승용차 국소부위충돌시험(small overlap)의 구현과 차체 강성을 알아보기 위한 실험

주요 실험장비: 5MN대형부재시험기

* 실험체는 승용차 형태로 의뢰자가 직접 제작하여 왔으며, 완성차가 아닌 프레임조립 형태임

* Small overlap 시험은 가장 최근에 개발된 시험 방법이자, 지금까지 나온 시험중 자동차에 가장 가혹한 Damage를 가할 수 있는 방법으로, 정식 실험을 하기 위해서는 많은 자금과 긴 시간이 필요하여 효율적 실험과 빠른 결과를 알아보기 위하여 정적실험을 진행

* 실험은 5MN대형부재시험기를 이용하여 small overlap 시험과 동일하게 차량 너비의 25%지점에 하중을 가력할 수 있도록 하였으며, 하중재하속도는 50 mm/min로 하였음

대구경 고강도 철근의 전단마찰 실험

실험내용: 대구경 고강도철근을 이용한 철근콘크리트 부재의 전단마찰거동을 검증하기 위한 실험

주요 실험장비: 5MN대형부재시험기, DATA LOGGER, Steel gauge, LVDT(50mm)

* 전단마찰파괴를 유도하기 위하여 전단마찰철근의 단면적, 전단마찰철근의 설계기준항복강도, 마찰계수, 전단마찰면의 단면적을 변수로 총 26개 실험체를 구성하였음

* 부재의 상부와 하부 각각 정 중앙에 300mm의 가력판을 배치하여 전단마찰실험을 수행하였음

* 실험은 5MN대형부재시험기로 단조 가력하여 수행되었음

* 실험체 상부와 하부에 각각 1개, 중앙부 3개 총 5개의 LVDT를 실험체면에 설치하였음

* 실험체 하중은 UTM 내부에 장착된 로드셀을 이용하여 계측하였으며, 전단마찰면의 수직변위와 수평변위는 LVDT를 설치하여 계측하였음

Publication

Sang-Hoon Oh and Hae-Yong Park International Journal of Steel Structures 16(1): 73-89 (2016) DOI 10.1007/s13296-016-3007-y ISSN 1598-2351 (Print) ISSN 2093-6311 (Online)

As structures are becoming bigger and more having long span, construction materials are also becoming higher performance materials. In response to this trend, 800MPa tensile strength class structural steel was developed in South Korea. Currently, many experiments applied high strength steel about flexural members, compression members, and connections are continuously conducted, but the design guideline for high strength steel has yet to be established. From among these, it is more difficult that planning of ductile beam-to-column connections because of the high yield ratio, which is the characteristic of high strength steel and related studies are not sufficient. Therefore, This study proposed connection details for the purpose of enhancing the deformation capacity of high strength steel beam-to-column connections and it conducted full-scale experiment and FEM analysis using the connection detail as the variable. As the connection detail, it applied non-scallop welding method and improved horizontal stiffener construction method. Especially, it suggests the stress balance design formula for the improved horizontal stiffener construction method, in order to improve the efficacy of strain distribution. Through the results of experiment and FEM analysis, it was analyzed structural performance of connections with proposed details, and it suggested the design scope of the improved horizontal stiffener.

Ehsan Salimi Firoozabada, Bub-Gyu Jeonb, Hyoung-Suk Choib, Nam-Sik Kima Nuclear Engineering and Design 284 (2015) 264–279

Nuclear power plants are high risk facilities due to the possibility of sudden seismic events, because any possible failure could initiate catastrophic radioactive contamination. The seismic fragility analysis of NPPs and related equipments (such as piping systems) is a proven method to determine their performance against any possible earthquake. In this study the Brookhaven National laboratory benchmark model of a piping system was considered for the fragility analysis. A tensile test was conducted to define the material properties. An initial seismic analysis of the piping system is performed to indicate the critical sections of the piping system. Numerical analysis was validated through a monotonic and cyclic loading experiment of two identified critical points of the piping system. The tests were conducted at the Korea Construction Engineering Development (KOCED) Seismic Simulation Test Center, Pusan National University, Korea. Fragility curves were expressed for critical points of the system as a function of the spectral acceleration of the records and the maximum relative displacement. The standard deviation of the response and capacity were calculated using mathematical formulas, assuming that those follow a log-normal distribution. We determined that the fragility curve of a pipe elbow must be derived for both the opening and closing mode, regarding the difference between the capacities of the elbow on those modes. The high confidence of low probability of failure for the considered fragility functions in a straight section in any direction is comparatively greater than the corresponding elbow section.

E.R. Baek S.H. Lee Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia (PCEE2015) Paper No. 42

The buildings with bearing walls for the upper stories and frames for the lower stories are mainly applied to multi-housing and multi purposed facilities in Korea. This building types have serious vulnerability as they are characterized by vertical and horizontal irregularity. For acquiring the seismic safety of the buildings of this type from an earthquake attack, it is necessary to understand seismic response behavior and failure mode of them considering stiffness and strength irregularities. In this study, the seismic performance of the low-rise reinforced concrete buildings with soft-weak story considering the irregularities was evaluated using nonlinear parametric analysis. Particularly a regularity index was introduced to quantify the soft-weak story irregularity simultaneously and it was used to review the criteria for classifying the irregularity

Kim, Seong-Do ・ Ahn, Jin-Hee ・ Kong, Young-Ee・ Choi, Hyoung-Suk ・ Cheung, Jin-Hwan ISSN 1226-525X / eISSN 2234-1099 EESK J Earthquake Eng Vol. 19 No. 4, 161-171 http://dx.doi.org/10.5000/EESK.2015.19.4.161

A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator. NPPs and related equipments (such as piping systems) is a proven method to determine their performance against any possible earthquake. In this study the Brookhaven National laboratory benchmark model of a piping system was considered for the fragility analysis. A tensile test was conducted to define the material properties. An initial seismic analysis of the piping system is performed to indicate the critical sections of the piping system. Numerical analysis was validated through a monotonic and cyclic loading experiment of two identified critical points of the piping system. The tests were conducted at the Korea Construction Engineering Development (KOCED) Seismic Simulation Test Center, Pusan National University, Korea. Fragility curves were expressed for critical points of the system as a function of the spectral acceleration of the records and the maximum relative displacement. The standard deviation of the response and capacity were calculated using mathematical formulas, assuming that those follow a log-normal distribution. We determined that the fragility curve of a pipe elbow must be derived for both the opening and closing mode, regarding the difference between the capacities of the elbow on those modes. The high confidence of low probability of failure for the considered fragility functions in a straight section in any direction is comparatively greater than the corresponding elbow section.

Baek, Eun Lim ・ Oh, Sang Hoon ・ Lee, Sang Ho EESK J Earthquake Eng Vol. 17 No. 4, 171-180 2013 http://dx.doi.org/10.5000/EESK.2013.17.4.171

The purpose of this study is to evaluate the effectiveness of the seismic retrofit performance for a reinforced concrete structure with steel damper. The nonlinear static analysis of the RC frame specimens with and without retrofit using the steel damper was conducted and the reliability of the analysis was verified by comparing the analysis and test results. Using this analysis model and method, additional nonlinear analysis was conducted considering varying stiffness and strength ratios between RC frame and steel damper and the failure mode of RC frame. As the result of the study, the total absorbed energy increased and the damage of RC frame was reduced as stiffness and strength ratios increased. The seismic retrofit performance, evaluated by means of the yield strength, increasing ratio of the absorbed energy and damage of the frame, increased linear proportionally with the increase of the strength ratio. In addition, the seismic retrofit performance was stable for stiffness ratios larger than 4~5. The energy absorption capacity of the frame governed by shear failure was better than that of the frame governed by flexure failure.

more